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Introduction

We consider the scalar conservation law in 2 dimensions

Bew + V - g(w) = 0, €]

where
* w(x,t) €R,
* x=(x1,x) € R2?,

o g(w) = (ql(W(xv t)))

G2(w(x, 1))
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Introduction

orw + V- q(w) =0. (S)J

® We only have one variable w € R. We use a kinetic scheme D2Qn,
which approximate (£) with n, equations with variables denoted
f e R™,

® Kinetic models are efficient numerical scheme which use transport at
constant velocities. However, it can be difficult to analyze them.

® The solution of this equation given by a kinetic model can be
approximate by an equivalent equation, which will have n, variables.

® The analysis of this equivalent equation gives us information on the
stability and the boundary conditions.
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© Kinetic scheme

e Equivalent equation

© Boundary conditions

@ Application to plasma physics
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Plan

0 Kinetic scheme
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Kinetic approximation

dew+V - q(w) =0 )|
We consider the BGK kinetic model
1
Oufi + V- (Aif) = = (79— £;), fori=1,...,n,, (K)
€

where
® )\; are the kinetic velocities,
e f = (f;) is the kinetic unknown,
e %9 = (£7) is the equilibrium kinetic vector which satisfy the

consistency relations

ny n

w=> 7 and gq(w)=> Nf. }

i=1 i=1

In the limit € — 0, >, f; tends to the solution w.
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1
Ocfi + Aj - Vi = (£ = f))

When € — 0, we have f; — 7.
By summing the n, equations, we obtain

ny
59

ny ny ny
Y dfit Y Ni-Vii= % (Z : —Zf,->.
i=1 i=1 i=1

i=1

We took the limit when € — 0, we have
ny ny
at (Z f}eq> + V . (Z )\if’_GQ> e 0
i=1 i=1
Using the consistency conditions, we finally obtain

orw + V- (q(w)) =0.
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The kinetic velocities

® |n the D2@3 model, we have n, = 3 kinetic velocities

A 2 2
Mo(o) () v ()
2 2

® |n the D2Q4 model, we have n, = 4 velocities along the cartesian

axes

) () w0 ()
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The moments
The consistency conditions gives us the system

w 11 1 1 [F
qu(w) | _ | Adr A1 Asp Aas £
q2(w) A2 A2 A2 Ao | | BT
eq eq
z3 my3 mp3 m33 ma3) \f,
M

With the D2Q@4 model, we are free to choose the third moment and its
equilibrium. We choose:

— 2 2 eq __
mj3 = (/\,'71) — ()\,"2) and Z3 = 0.
w
V4 .
We note g = S the variables such as
2
z3
g = Mf

(1)
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Splitting method

To solve in time the kinetic model
1
Ofi +Ai - Vi = E(fieq— fi), (K)

we apply a splitting method:

® Transport step:

Ocfi + Xi - Vi =0. (T)
® Relaxation step:
1
atf;' — E(fieq - f:) (R)

We consider a time step At > 0. At each iteration, we solve (7) and (R)
on At.

Romane Hélie Equivalent equation analysis of a kinetic relaxation model 10 / 41



Transport step

The exact solutions of the n, transport equations
Ocfi + Xi - VI =0, (T)

write
f7(x, t + At) = fi(x — At t).

The resolution of (7°) for one time step can be written

f*(x,t+ At) = D(At)F(x,t), J

with the translation operator
(ri(h)v) (x) = v(x = hXj),

Tl(At)
and D the diagonal matrix operator D(At) =
Tn, (At)
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Flux error
As we have g = Mf, we can rewrite the transport step as

g (x,t + At) = MD(At)M~tg(x, t).

We define the flux error as J

Yk = zk — qk(w), for k =1,2.

The transport step in the moments g = (w, z) can be rewritten on the
error flux h = (w, y)
w*(x,t + At)
yi(x, t + At)
vi(x,t+ At)
z3(x, t + At)

W(X, t) 0

- (x4 A1)
MDA M- | iet) Fa(wlx 6) | fau(w(x, t+
23(X7 t) 0
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Relaxation step
We want to solve

1
Ocf; = ~(F°9 — £). (R)
€
We note
e f: the kinetic fields at time t, = nAt.
e f*: the kinetic fields after the free transport step.

e £ the equilibrium fields after the free transport step.
We approximate (R) by the relaxation formula

FHl = £ pw (F°°9 — £),  with w € [1,2]. J
By choosing w = 2 (justification of this choice below), we have
w(x,t+ At) w*(x, t + At)
zi(x, t+ At) | | 2q1(w*(x, t + At)) — zf(x, t + At)
n(x, t+At) | | 2qa(w*(x, t + At)) — Z5(x, t + At)
z3(x, t + At) —z3(x, t + At)
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Plan

e Equivalent equation
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Equivalent equation

® \When w = 2 and up to second order terms in At the equivalent
equation of the D2@3 scheme is:

w q1(w) 0 0 w

v+ 0 2—diw) 0 |04 |n

¥2 0 —q(w) -3 ¥2
Ar

g(w) 0 0 w

+ 0 0 —3-ai(w)|du|n|=0

0 -3  —gw) y2

Az

® When w = 1 the equivalent equation is only a first order
approximation.

> In green, we retrieve the initial equation (£).
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Numerical validation of the equivalent equation

We can compare
° yl"f and yz"f obtained by solving the equivalent equation (with a finite
volume method, for instance),

o ykin and ykin obtained by y*" = 33 | A\;f; — g(w) after solving the
equation (&) with the D2Q3 model.
We choose the parameters
e Q=10,1] x [0,1],
® gi(w)=1and gh(w) =1,
e \=3,
® 3 Gaussian initialization

I — xg'||? Ix — xg]1?
w(x,0) = exp (—T and yk(x,0) =exp o2

with o = 0.05, x§’ = (0.25,0.25) and x = (0.5,0.5).
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Validation of the equivalent equation

ykm yvf ||y

kin yfo

Y1

Y2

Table: Error fluxes y“" and y*f and the L? error ||y*" — yV|| at T; = 0.06 for a
mesh of size 800 x 800.

lykin — y¥f|| = 5.64567 x 10™% and  |lyk" — y¥f|| = 1.95625 x 103

> The equivalent equation is a good approximation of the scheme and
therefore it gives useful information in its behavior.
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Subcharacteristic stability condition
A classical result is the following subcharacteristic stability condition. If we

consider w # 2 and a linear flux g(w) = (Z‘;‘;) the equivalent equation is

dew +V - q(w) = At G — %) V- (DVw) + O(At?), J

with the diffusion matrix

Do <%()\-I-a)—a2 —3b—ab >

—3b—ab  3(A—a)—b?

The model is stable if this diffusion matrix is positive, that is if the
eigenvalues of D are positive.

The subcharacteristic stability condition is

1
> ()? —a2-b =+ \/(a2 + b?)2 + \(—2a3 + 6ab?) + A2(a2 + b2)> > 0.
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Hyperbolicity condition

Proposition

If the subcharacteristic condition is satisfied then, the change of variable
h = Pm symmetrizes the equivalent equation, which is thus a hyperbolic
system with an entropy. We have

0tPm + A1 PO, m + A2PO,,m = 0,
with A; and A, the matrices of the equivalent equation and

1 0 0
P=|0 %()\—i—a)—a2 —%b—ab
0 —3%b—ab 3(A—a)— b

is hyperbolic.
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Equivalent equation

By the same Taylor expansion,

we get the equivalent equation of the D2Q4 model

w q;(w) 0 0 0 w
7 0 —gi(w) 0 3 n
0 + 2 |9,
"2 0 —gy(w) 0 0] ™|y
z3 0 )\2 0 0 Z3
A
gy(w) 0 0 0 w
0 0 —qgi(w) O %
+ @l
0 0 —gh(w) —3] 72|
0 0 —)\2 0 z3
Az
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Numerical validation of the equivalent equation

ykm yvf ||ykm _ yfo

Y1

Y2

Table: Error fluxes y“" and y*f and the L? error ||y*" — yV|| at T; = 0.06 for a
mesh of size 800 x 800.

lykin — y¥f|| = 1.21999 x 105 and  |lyk" — y¥f|| = 1.57384 x 105

> The equivalent equation is a good approximation of the scheme and
therefore it gives useful information in its behavior.
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Subcharacteristic stability condition

If we consider a linear flux g(w) = (ZX) we have

0w+ - a(w) = At (- = 5 ) V- (DVw) + 0(A2)

with the diffusion matrix

D ’\72 —a®> —ab
"\ —ap ¥ -p?)
The model is stable if this diffusion matrix is positive, that is if the
eigenvalues of D are positive.

The subcharacteristic condition for viscous stability is

)\2
32+b2 < ?
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Hyperbolicity condition

Proposition
If A2 > 4max(a?, b?), then the system

0tPm + A1PO,,m + A2POy,m = 0,

with A; and Aj the matrices of the equivalent equation and

1 0 0 0

p_ 0 )‘72 — 22 z—ab Na ’
0 —ab 5 —b%2 -\
0 Aa X M

is hyperbolic.

This hyperbolicity condition is more restrictive than the viscous stability
condition.
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9 Boundary conditions
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Boundary conditions

® |n theory, the over-relaxation gives us a second order accuracy. We
want to find adapted boundary condition, which gives us this
accuracy.

® A first choice is to only impose boundary condition on w. But if we
solve the equation with a kinetic model D2@n,, then we need (in
general) more conditions. Therefore, we need additional conditions
on the variables y;, y> (and z3 for the D2Q4 model).

® Moreover, we can only impose w at the inflow boundary.

® |n one dimension, the second order is achieved with a Dirichlet
condition on w at the inflow border, and a Neumann condition on y
at the outflow border (see [Drui et al., 2019]).
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Signs of the eigenvalues

We have the equivalent equation 0:h + A10x, h + A20x,h = 0.
Let’s note n = (n1, n2) a normal vector.

A strategy is to impose the components in the basis of the eigenvectors of
the matrix A;n; + Axno when the associated eigenvalues are negative.

We choose

® a square geometry rotated of an angle j
® the initialization

o if r(x,x) > 1,
w(xi, x,t =0) = { (1 —r(xi,x2)?)® otherwise.

with r(x, xp) = Yazaltleral 0y 5 — 04,

o

e \=1, T =1, and Nt = 25,50, 100, 200.
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Signs of the eigenvalues

We consider 2 different test-cases :
© The peak starts outside the geometry and arrives in the middle of the
left border.
@ The peak starts in the middle of the square and arrives in the middle
of the left border.

1 2

a | —0.5cos(m/10+ ) | —0.5cos(7/10)
b | —0.5sin(7/10+ ) | —0.5sin(7/10)
c1 | 0.5+ cos(m/10 + ) 0.5

& | 0.5 +sin(/10 + ) 0.5
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Signs of the eigenvalues

1072 -—- order1
~—- order2
— casl
— cas2

2x1072  3x10724x107?
At

Figure: Error L? for the two test-case with the boundary conditions defined with
the signs of the eigenvalues

We can observe that this boundary condition strategy does not give us a
second-order accuracy for the first test-case, but it is at least stable.
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o Application to plasma physics

Romane Hélie Equivalent equation analysis of a kinetic relaxation model



Guiding-center model

Now, we consider the guiding-center model in 2 dimensions, which
describes the drift of the plasma

Op+v-Vp=0,
_A(b:pa

where
® o is the ion density,
® ¢ is the potential,
e E is the electric field defined as v(x, t) = (—V(x, t))* = E(x, t)l.J

We use a finite element solver on the same poloidal mesh to solve Poisson
equation in the poloidal plane.
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Initialization
We initialize the density with the continuous
function

r—rO)2

(
p(r,0,0) =e 202 (1+ ecos(kf)),

with
X = rcos#f,
y =rsinf.
We choose a ring geometry: o e
Q = {(rcos(8), rsin(8)) | fmin < r < Fmax, Figure: Initialization of the

density at time t = 0, with
Imin = 1, rmax = 10,

=45 06=05 e=1075.

0<60<2r},

with homogeneous Dirichlet boundary conditions
on the potential ¢ at r = rpjp and r = rpax.
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Instability rate

We can estimate the growth rate of the instability created by the
perturbation, and compare it with the results of our solver:

® Theoretical instability rate:
0.15215

® QObserved instability rate:
R 0.15186

Figure: Instability rate observed
compared to the theoretical one.

» The slope of the k" Fourier mode of the potential is fitting the
theoretical instability rate, which validates our computing.
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2D Diocotron testcase

We choose At = 0.0125, n; = 8000, A\, =7, w = 1.999, and k = 2.

We consider a mesh of size: 100 x 60.

012 0005 011 0225 034 0455 057 0685 08 0915 103
— C —

Figure: Densities obtained at time t = 80, t = 90 and t = 100.
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3D model

We consider the model in 3 dimensions which describes the drift of the
plasma inside a tokamak.

Otp+ V- ((E xe,+B)p) =0,
=Dy yd = p,
E = _vx,y¢7

with
® pis the density,
® F is the electric field,
® B = (—sin(f)ex + cos(f)e,)By + B,e, with 6 the angle of the polar

coordinates in the plane (x,y): a divergence free magnetic field
(this is satisfied if By and B, are constants).
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The D3Q6 model
® In the (x,y) planes, we do a D2Q4 model:

A M 0 0
M= 0 |, xa=( 0 |, xa= N |, xa=] - ).
0 0 0 0

e In the z direction, we do a D1Q2 model:

0 0
M= 0 |, x=( o |.
Az =z

» We use an unstructured mesh in the (x, y) direction and a periodic
structured mesh in the z direction.

> We solve the transport kinetic equations with a Discontinuous
Galerkin method in (x,y) and a characteristic method in the z
direction.

» The implementation is parallelized with OpenMP in the (x, y) planes
and with MPI in the z direction.

> The solver is CFL-less. )
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Initialization of the Diocotron testcase

We initialize the density with

_(r=rg)® 27
p(r,0,z,0) =e 202 (1 + €cos (k@ + IzL>> .
The computational domain is the cylinder

Q = {(rcos(0),rsin(0),z) | rmin < r < rmax,0< 0 <27, 0<z<L=1}.

We consider

® homogeneous Dirichlet boundary conditions on the potential ¢,

® periodic boundary conditions on z.
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3D Diocotron testcase

We choose At = 0.0026, n; = 38400, w = 1.99, n, = 128, A\, =7,
A=3,By=01B,=1 k=2and /| =1.

In the poloidal plane, we took a mesh of size 80 x 50.

Figure: Density at tpmax = 100 for the poloidal planes z =0, z = %, z= % and
3L
zZ = =

» Same density, but with a rotation.
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Animation of the Diocotron testcase

Figure: Evolution of the density in three poloidal planes.
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Conclusion

® The equivalent equation of the kinetic models gives useful information
about stability and boundary conditions.

® The kinetic scheme is CFL-less and can be used on unstructured
grids.

® We have computed and tested it in an efficient way on a parallel
computer.
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Thank you for your attention !
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Hyperbolicity condition

According to the equivalent equations, we have

atg + Alaxlg + A28x2g = 07

A A
. s—a 0 0 —5-—a
W|thA1:<2_b _/2\> andA2:<_é\ 2—b )

Theorem

If A1P and A>P are symmetric and P is symmetric positive-definite, then

0:+Pg + A1POy, 8 + A2P0y,8 =0

is hyperbolic.




Hyperbolicity condition D2@3 (demonstration)

Demonstration :

u v
v w/’
A1P and AP are symmetric if

A A _ —b
(5 —a)v=—bu—35v vV=5,Uu
2 2 PEREN a
{ 3 {
> a

We note P =

_ AA—a)—2p?
W= 10Fa)0-aY

If we choose u = % the eigenvalues of P are :

1
> ()\2 — a2 - b+ \/(32 + b2)? + A(—2a3 + 6ab?) + \?(a% + b2)> .

We observe that p; and po are equal to the eigenvalues of the diffusion
matrix. Therefore, the matrix P is positive-definite if the stability
conditions are verified.



Hyperbolicity condition D2@Q4 (demonstration)

According to the equivalent equations, we have

0.8 + A1, 8 + Ardrug = 0

—a 0 3 0 —-a O0
with Ay=|—-b 0 0fandA=[0 —b -3
A2 00 0 =X 0
u v w
Demonstration : Wenote P= v x y
w y z

A1P and AP are symmetric if

bu = av — %y
Nu=—aw + %z
A2v = —bw

bv + %W = ax
Nv = ay

A°x = by + %z



Hyperbolicity condition D2@Q4 (demonstration)

By solving this system and choosing v = —ab, we obtain
’\72 —a®> —ab Na
P=| —ab % b N\
\a —\%b 4

As P is symmetric, according to the Sylvester's criterion, P is

positive-definite if and only if all of the leading principal minors are
positive.

° |Pi| = ’\72 — a2 > 0 if the stability condition is verified.

° |P| = (%2—32) (%—b2>—a2b2:’\72()‘72—a2—b2) > 0.

° |P3] =\* ()‘72 = 232) (%2 = 2b2> > 0 if )‘72 > 2max (a%, b?) or if
)‘72 > 2 min (a2, b?)
If2the stability condition is verified, we cannot have
2 > 2min (a2, b?).

. . . 2 ;92 A2
Finally, the system is hyperbolic if 2max (a, b%) < 5.



