Equivalent equation analysis of a kinetic relaxation model

Matthieu Boileau, Emmanuel Franck, <u>Romane Hélie</u>, Philippe Helluy, Laurent Navoret

Institut de Recherche Mathématique Avancée, Université de Strasbourg. INRIA Nancy-Grand Est, TONUS Project.

> Séminaire EDP January 18, 2022

Introduction

We consider the scalar conservation law in 2 dimensions

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = 0,$$
 (\mathcal{E})

where

•
$$w(\mathbf{x}, t) \in \mathbb{R}$$
,
• $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$,
• $q(w) = \begin{pmatrix} q_1(w(\mathbf{x}, t)) \\ q_2(w(\mathbf{x}, t)) \end{pmatrix}$.

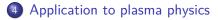
Introduction

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = 0.$$

- We only have one variable w ∈ ℝ. We use a kinetic scheme D2Qn_v which approximate (E) with n_v equations with variables denoted f ∈ ℝ^{n_v}.
- Kinetic models are efficient numerical scheme which use transport at **constant velocities**. However, it can be difficult to analyze them.
- The solution of this equation given by a kinetic model can be approximate by an equivalent equation, which will have n_v variables.
- The analysis of this equivalent equation gives us information on the **stability** and the **boundary conditions**.

2 Equivalent equation

Boundary conditions



Plan

Kinetic scheme

- 2 Equivalent equation
- 3 Boundary conditions
- 4 Application to plasma physics

Kinetic approximation

$$\partial_t w + \nabla \cdot \boldsymbol{q}(w) = 0$$
 (\mathcal{E})

We consider the BGK kinetic model

$$\partial_t f_i + \nabla \cdot (\boldsymbol{\lambda}_i f_i) = \frac{1}{\epsilon} \left(f_i^{eq} - f_i \right), \quad \text{for } i = 1, \dots, n_v, \quad (\mathcal{K})$$

where

- λ_i are the kinetic velocities,
- $\mathbf{f} = (f_i)$ is the kinetic unknown,
- $f^{eq} = (f_i^{eq})$ is the equilibrium kinetic vector which satisfy the consistency relations

$$w = \sum_{i=1}^{n_v} f_i^{eq}$$
 and $\boldsymbol{q}(w) = \sum_{i=1}^{n_v} \lambda_i f_i^{eq}.$

In the limit $\epsilon \to 0$, $\sum_{i=1}^{n_v} f_i$ tends to the solution w.

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = \frac{1}{\epsilon} (f_i^{eq} - f_i)$$

When $\epsilon \to 0$, we have $f_i \to f_i^{eq}$. By summing the n_v equations, we obtain

$$\sum_{i=1}^{n_{v}} \partial_{t} f_{i} + \sum_{i=1}^{n_{v}} \lambda_{i} \cdot \boldsymbol{\nabla} f_{i} = \frac{1}{\epsilon} \left(\sum_{i=1}^{n_{v}} f_{i}^{eq} - \sum_{i=1}^{n_{v}} f_{i} \right).$$

We took the limit when $\epsilon \rightarrow 0$, we have

$$\partial_t \left(\sum_{i=1}^{n_v} f_i^{eq}\right) + \boldsymbol{\nabla} \cdot \left(\sum_{i=1}^{n_v} \lambda_i f_i^{eq}\right) = 0.$$

Using the consistency conditions, we finally obtain

$$\partial_t w + \nabla \cdot (\boldsymbol{q}(w)) = 0.$$

The kinetic velocities

• In the D2Q3 model, we have $n_v = 3$ kinetic velocities

$$\lambda_1 = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \quad \lambda_2 = \begin{pmatrix} -\frac{\lambda}{2} \\ \frac{\lambda\sqrt{3}}{2} \end{pmatrix}, \quad \lambda_3 = \begin{pmatrix} -\frac{\lambda}{2} \\ -\frac{\lambda\sqrt{3}}{2} \end{pmatrix}$$

• In the D2Q4 model, we have $n_v = 4$ velocities along the cartesian axes

$$\boldsymbol{\lambda}_1 = \begin{pmatrix} \lambda \\ 0 \end{pmatrix}, \quad \boldsymbol{\lambda}_2 = \begin{pmatrix} -\lambda \\ 0 \end{pmatrix}, \quad \boldsymbol{\lambda}_3 = \begin{pmatrix} 0 \\ \lambda \end{pmatrix}, \quad \boldsymbol{\lambda}_4 = \begin{pmatrix} 0 \\ -\lambda \end{pmatrix}.$$

The moments

The consistency conditions gives us the system

$$\begin{pmatrix} w \\ q_1(w) \\ q_2(w) \\ z_3^{eq} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 1 & 1 & 1 \\ \lambda_{1,1} & \lambda_{2,1} & \lambda_{3,1} & \lambda_{4,1} \\ \lambda_{1,2} & \lambda_{2,2} & \lambda_{3,2} & \lambda_{4,2} \\ m_{1,3} & m_{2,3} & m_{3,3} & m_{4,3} \end{pmatrix}}_{M} \begin{pmatrix} f_1^{eq} \\ f_2^{eq} \\ f_3^{eq} \\ f_4^{eq} \end{pmatrix}$$

With the D2Q4 model, we are free to choose the third moment and its equilibrium. We choose:

$$m_{i,3} = (\lambda_{i,1})^2 - (\lambda_{i,2})^2$$
 and $z_3^{eq} = 0.$
We note $\boldsymbol{g} = \begin{pmatrix} w \\ z_1 \\ z_2 \\ z_3 \end{pmatrix}$ the variables such as

 $\boldsymbol{g} = M\boldsymbol{f}$

(1)

٠

Splitting method

To solve in time the kinetic model

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = \frac{1}{\epsilon} (f_i^{eq} - f_i),$$
 (K)

we apply a splitting method:

• Transport step:

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = 0.$$
 (*T*)

• Relaxation step:

$$\partial_t f_i = \frac{1}{\epsilon} (f_i^{eq} - f_i).$$
 (*R*)

We consider a time step $\Delta t > 0$. At each iteration, we solve (\mathcal{T}) and (\mathcal{R}) on Δt .

Transport step

The exact solutions of the n_v transport equations

$$\partial_t f_i + \boldsymbol{\lambda}_i \cdot \boldsymbol{\nabla} f_i = 0,$$
 (\mathcal{T})

write

$$f_i^*(\mathbf{x}, t + \Delta t) = f_i(\mathbf{x} - \Delta t \boldsymbol{\lambda}_i, t).$$

The resolution of (\mathcal{T}) for one time step can be written

$$\boldsymbol{f}^*(\boldsymbol{x},t+\Delta t)=D(\Delta t)\boldsymbol{f}(\boldsymbol{x},t),$$

with the translation operator

$$(\tau_i(h)v)(\mathbf{x}) = v(\mathbf{x} - h\boldsymbol{\lambda}_i),$$

and *D* the diagonal matrix operator $D(\Delta t) = \begin{pmatrix} \tau_1(\Delta t) & & \\ & \ddots & \\ & & &$

Flux error

As we have $m{g}=Mm{f}$, we can rewrite the transport step as $m{g}^*(m{x},t+\Delta t)=MD(\Delta t)M^{-1}m{g}(m{x},t).$

We define the flux error as

$$y_k = z_k - q_k(w),$$
 for $k = 1, 2.$

The transport step in the moments $\boldsymbol{g} = (w, \boldsymbol{z})$ can be rewritten on the error flux $\boldsymbol{h} = (w, \boldsymbol{y})$

Relaxation step

We want to solve

$$\partial_t f_i = \frac{1}{\epsilon} (f_i^{eq} - f_i).$$
 (R)

We note

- f_i^n : the kinetic fields at time $t_n = n\Delta t$.
- f_i^* : the kinetic fields after the free transport step.
- $f_i^{*,eq}$: the equilibrium fields after the free transport step.

We approximate (\mathcal{R}) by the relaxation formula

$$f_i^{n+1} = f_i^* + \omega \left(f_i^{*,eq} - f_i^* \right), \quad \text{ with } \omega \in [1,2].$$

By choosing $\omega = 2$ (justification of this choice below), we have

$$egin{aligned} & \begin{pmatrix} w(m{x},t+\Delta t) \ z_1(m{x},t+\Delta t) \ z_2(m{x},t+\Delta t) \ z_3(m{x},t+\Delta t) \end{pmatrix} = egin{pmatrix} w^*(m{x},t+\Delta t) \ 2q_1(w^*(m{x},t+\Delta t)) - z_1^*(m{x},t+\Delta t) \ 2q_2(w^*(m{x},t+\Delta t)) - z_2^*(m{x},t+\Delta t) \ -z_3^*(m{x},t+\Delta t) \end{pmatrix} \end{aligned}$$

Kinetic scheme

2 Equivalent equation

3 Boundary conditions

Equivalent equation

• When $\omega = 2$ and up to second order terms in Δt the equivalent equation of the D2Q3 scheme is:

$$\partial_t \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} + \underbrace{\begin{pmatrix} q_1'(w) & 0 & 0 \\ 0 & \frac{\lambda}{2} - q_1'(w) & 0 \\ 0 & -q_2'(w) & -\frac{\lambda}{2} \end{pmatrix}}_{A_1} \partial_{x_1} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} + \underbrace{\begin{pmatrix} q_2'(w) & 0 & 0 \\ 0 & 0 & -\frac{\lambda}{2} - q_1'(w) \\ 0 & -\frac{\lambda}{2} & -q_2'(w) \end{pmatrix}}_{A_2} \partial_{x_2} \begin{pmatrix} w \\ y_1 \\ y_2 \end{pmatrix} = 0.$$

- When ω = 1 the equivalent equation is only a first order approximation.
- In green, we retrieve the initial equation (\mathcal{E}) .

Numerical validation of the equivalent equation

We can compare

- y₁^{vf} and y₂^{vf} obtained by solving the equivalent equation (with a finite volume method, for instance),
- y_1^{kin} and y_2^{kin} obtained by $\mathbf{y}^{kin} = \sum_{i=1}^3 \lambda_i f_i q(w)$ after solving the equation (\mathcal{E}) with the D2Q3 model.

We choose the parameters

- $\Omega = [0,1] \times [0,1]$,
- $q'_1(w) = 1$ and $q'_2(w) = 1$,
- λ = 3,
- a Gaussian initialization

$$w(\mathbf{x},0) = \exp\left(-rac{\|\mathbf{x} - \mathbf{x}_0^w\|^2}{2\sigma^2}
ight)$$
 and $y_k(\mathbf{x},0) = \exp\left(-rac{\|\mathbf{x} - \mathbf{x}_0^y\|^2}{2\sigma^2}
ight)$

with $\sigma = 0.05$, $\mathbf{x}_0^w = (0.25, 0.25)$ and $\mathbf{x}_0^y = (0.5, 0.5)$.

Validation of the equivalent equation

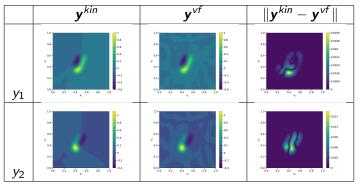


Table: Error fluxes \mathbf{y}^{kin} and \mathbf{y}^{vf} and the L^2 error $\|\mathbf{y}^{kin} - \mathbf{y}^{vf}\|$ at $T_f = 0.06$ for a mesh of size 800×800 .

$$\| \boldsymbol{y}_1^{\textit{kin}} - \boldsymbol{y}_1^{\textit{vf}} \| = 5.64567 \times 10^{-4} \quad \text{ and } \quad \| \boldsymbol{y}_2^{\textit{kin}} - \boldsymbol{y}_2^{\textit{vf}} \| = 1.95625 \times 10^{-3}$$

The equivalent equation is a good approximation of the scheme and therefore it gives useful information in its behavior.

Romane Hélie

Equivalent equation analysis of a kinetic relaxation model

Subcharacteristic stability condition

A classical result is the following subcharacteristic stability condition. If we consider $\omega \neq 2$ and a linear flux $q(w) = \begin{pmatrix} aw \\ bw \end{pmatrix}$, the equivalent equation is

$$\partial_t w + \nabla \cdot q(w) = \Delta t \left(\frac{1}{\omega} - \frac{1}{2}\right) \nabla \cdot (\mathcal{D} \nabla w) + O(\Delta t^2),$$

with the diffusion matrix

$$\mathcal{D} = egin{pmatrix} rac{\lambda}{2}(\lambda+\mathsf{a})-\mathsf{a}^2 & -rac{\lambda}{2}b-\mathsf{a}b\ -rac{\lambda}{2}b-\mathsf{a}b & rac{\lambda}{2}(\lambda-\mathsf{a})-b^2 \end{pmatrix}.$$

The model is stable if this diffusion matrix is positive, that is if the eigenvalues of \mathcal{D} are positive.

The subcharacteristic stability condition is

$$\frac{1}{2}\left(\lambda^2 - a^2 - b^2 \pm \sqrt{(a^2 + b^2)^2 + \lambda(-2a^3 + 6ab^2) + \lambda^2(a^2 + b^2)}\right) > 0.$$

Hyperbolicity condition

Proposition

If the subcharacteristic condition is satisfied then, the change of variable h = Pm symmetrizes the equivalent equation, which is thus a hyperbolic system with an entropy. We have

$$\partial_t P \boldsymbol{m} + A_1 P \partial_{x_1} \boldsymbol{m} + A_2 P \partial_{x_2} \boldsymbol{m} = 0,$$

with A_1 and A_2 the matrices of the equivalent equation and

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\lambda}{2}(\lambda+a) - a^2 & -\frac{\lambda}{2}b - ab \\ 0 & -\frac{\lambda}{2}b - ab & \frac{\lambda}{2}(\lambda-a) - b^2 \end{pmatrix}$$

is hyperbolic.

Equivalent equation

By the same Taylor expansion,

we get the equivalent equation of the D2Q4 model

$$\partial_{t} \begin{pmatrix} w \\ y_{1} \\ y_{2} \\ z_{3} \end{pmatrix} + \underbrace{\begin{pmatrix} q_{1}'(w) & 0 & 0 & 0 \\ 0 & -q_{1}'(w) & 0 & \frac{1}{2} \\ 0 & -q_{2}'(w) & 0 & 0 \\ 0 & \lambda^{2} & 0 & 0 \end{pmatrix}}_{A_{1}} \partial_{x_{1}} \begin{pmatrix} w \\ y_{1} \\ y_{2} \\ z_{3} \end{pmatrix} + \underbrace{\begin{pmatrix} q_{2}'(w) & 0 & 0 & 0 \\ 0 & 0 & -q_{1}'(w) & 0 \\ 0 & 0 & -q_{1}'(w) & 0 \\ 0 & 0 & -q_{2}'(w) & -\frac{1}{2} \\ 0 & 0 & -\lambda^{2} & 0 \end{pmatrix}}_{A_{2}} \partial_{x_{2}} \begin{pmatrix} w \\ y_{1} \\ y_{2} \\ z_{3} \end{pmatrix} = 0.$$

Numerical validation of the equivalent equation

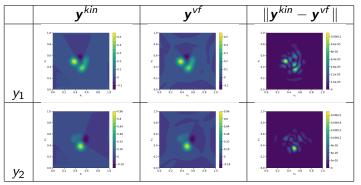


Table: Error fluxes \mathbf{y}^{kin} and \mathbf{y}^{vf} and the L^2 error $\|\mathbf{y}^{kin} - \mathbf{y}^{vf}\|$ at $T_f = 0.06$ for a mesh of size 800×800 .

$$\|m{y}_1^{\textit{kin}} - m{y}_1^{\textit{vf}}\| = 1.21999 imes 10^{-5}$$
 and $\|m{y}_2^{\textit{kin}} - m{y}_2^{\textit{vf}}\| = 1.57384 imes 10^{-5}$

The equivalent equation is a good approximation of the scheme and therefore it gives useful information in its behavior.

Romane Hélie

Equivalent equation analysis of a kinetic relaxation model

Subcharacteristic stability condition

If we consider a **linear flux** $q(w) = \begin{pmatrix} aw \\ bw \end{pmatrix}$, we have

$$\partial_t w + \nabla \cdot q(w) = \Delta t \left(\frac{1}{\omega} - \frac{1}{2} \right) \nabla \cdot (\mathcal{D} \nabla w) + O(\Delta t^2),$$

with the diffusion matrix

$$\mathcal{D} = egin{pmatrix} rac{\lambda^2}{2} - a^2 & -ab \ -ab & rac{\lambda^2}{2} - b^2 \end{pmatrix}.$$

The model is stable if this diffusion matrix is positive, that is if the eigenvalues of \mathcal{D} are positive.

The subcharacteristic condition for viscous stability is

$$a^2+b^2\leq rac{\lambda^2}{2}.$$

Hyperbolicity condition

Proposition

If $\lambda^2 > 4 \max(a^2, b^2)$, then the system

$$\partial_t P \boldsymbol{m} + A_1 P \partial_{x_1} \boldsymbol{m} + A_2 P \partial_{x_2} \boldsymbol{m} = 0,$$

with A_1 and A_2 the matrices of the equivalent equation and

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{\lambda^2}{2} - a^2 & -ab & \lambda^2 a \\ 0 & -ab & \frac{\lambda^2}{2} - b^2 & -\lambda^2 b \\ 0 & \lambda^2 a & -\lambda^2 b & \lambda^4 \end{pmatrix},$$

is hyperbolic.

This hyperbolicity condition is more restrictive than the viscous stability condition.

Kinetic scheme

- 2 Equivalent equation
- Boundary conditions
 - 4 Application to plasma physics

Boundary conditions

- In theory, the over-relaxation gives us a second order accuracy. We want to find adapted boundary condition, which gives us this accuracy.
- A first choice is to only impose boundary condition on w. But if we solve the equation with a kinetic model $D2Qn_v$, then we need (in general) more conditions. Therefore, we need additional conditions on the variables y_1 , y_2 (and z_3 for the D2Q4 model).
- Moreover, we can only impose w at the inflow boundary.
- In one dimension, the second order is achieved with a Dirichlet condition on *w* at the inflow border, and a Neumann condition on *y* at the outflow border (see [Drui *et al.*, 2019]).

Signs of the eigenvalues

We have the equivalent equation $\partial_t \mathbf{h} + A_1 \partial_{x_1} \mathbf{h} + A_2 \partial_{x_2} \mathbf{h} = 0$. Let's note $n = (n_1, n_2)$ a normal vector.

A strategy is to impose the components in the basis of the eigenvectors of the matrix $A_1n_1 + A_2n_2$ when the associated eigenvalues are negative.

We choose

- a square geometry rotated of an angle $\frac{\pi}{10}$
- the initialization

$$w(x_1, x_2, t = 0) = \begin{cases} 0 & \text{if } r(x_1, x_2) > 1, \\ (1 - r(x_1, x_2)^2)^5 & \text{otherwise.} \end{cases}$$

with
$$r(x_1, x_2) = \frac{\sqrt{(x_1 - c_1)^2 + (x_2 - c_2)^2}}{\sigma}$$
 and $\sigma = 0.4$.
 $\lambda = 1, T = 1$, and $Nt = 25, 50, 100, 200$.

Signs of the eigenvalues

We consider 2 different test-cases :

- The peak starts outside the geometry and arrives in the middle of the left border.
- The peak starts in the middle of the square and arrives in the middle of the left border.

	1	2
а	$-0.5\cos(\pi/10+\pi)$	$-0.5\cos(\pi/10)$
b	$-0.5\sin(\pi/10+\pi)$	$-0.5\sin(\pi/10)$
<i>c</i> ₁	$0.5 + \cos(\pi/10 + \pi)$	0.5
<i>c</i> ₂	$0.5+\sin(\pi/10+\pi)$	0.5

Signs of the eigenvalues

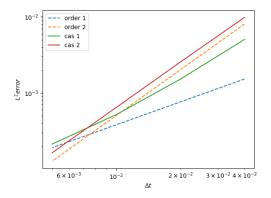


Figure: Error L^2 for the two test-case with the boundary conditions defined with the signs of the eigenvalues

We can observe that this boundary condition strategy does not give us a second-order accuracy for the first test-case, but it is at least **stable**.

Romane Hélie

Equivalent equation analysis of a kinetic relaxation model

1 Kinetic scheme

- 2 Equivalent equation
- 3 Boundary conditions

Guiding-center model

Now, we consider the **guiding-center model** in 2 dimensions, which describes the drift of the plasma

$$\begin{cases} \partial_t \rho + \mathbf{v} \cdot \nabla \rho = \mathbf{0}, \\ -\Delta \phi = \rho, \end{cases}$$

where

- *ρ* is the ion density,
- ϕ is the **potential**,
- *E* is the electric field defined as $\mathbf{v}(\mathbf{x}, t) = (-\nabla \phi(\mathbf{x}, t))^{\perp} = E(\mathbf{x}, t)^{\perp}$.

We use a finite element solver on the same poloidal mesh to solve Poisson equation in the poloidal plane.

Initialization

We initialize the density with the continuous function

$$\rho(r,\theta,0) = e^{-\frac{(r-r0)^2}{2\sigma^2}}(1+\epsilon\cos(k\theta)),$$

with

$$\begin{cases} x = r \cos \theta, \\ y = r \sin \theta. \end{cases}$$

We choose a ring geometry:

$$\Omega = \{ (r \cos(\theta), r \sin(\theta)) \mid r_{min} \le r \le r_{max}, \\ 0 \le \theta \le 2\pi \},\$$

with homogeneous Dirichlet boundary conditions on the potential ϕ at $r = r_{min}$ and $r = r_{max}$.

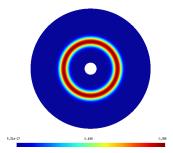
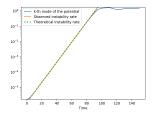


Figure: Initialization of the density at time t = 0, with $r_{min} = 1$, $r_{max} = 10$, $r_0 = 4.5$, $\sigma = 0.5$, $\epsilon = 10^{-6}$.

Instability rate

We can estimate the growth rate of the instability created by the perturbation, and compare it with the results of our solver:



Theoretical instability rate: 0.15215
Observed instability rate: 0.15186

Figure: Instability rate observed compared to the theoretical one.

The slope of the kth Fourier mode of the potential is fitting the theoretical instability rate, which validates our computing.

2D Diocotron testcase

We choose $\Delta t = 0.0125$, $n_t = 8000$, $\lambda_p = 7$, $\omega = 1.999$, and k = 2. We consider a mesh of size: 100×60 .

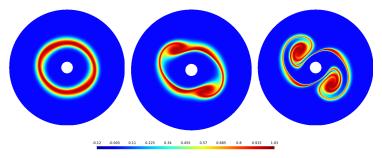


Figure: Densities obtained at time t = 80, t = 90 and t = 100.

3D model

We consider the model in 3 dimensions which describes the drift of the plasma inside a tokamak.

$$\begin{cases} \partial_t \rho + \nabla \cdot ((E \times e_z + B)\rho) = 0, \\ -\Delta_{x,y} \phi = \rho, \\ E = -\nabla_{x,y} \phi, \end{cases}$$

with

- *ρ* is the density,
- E is the electric field,
- B = (-sin(θ)e_x + cos(θ)e_y)B_θ + B_ze_z with θ the angle of the polar coordinates in the plane (x, y): a divergence free magnetic field (this is satisfied if B_θ and B_z are constants).

The D3Q6 model

• In the (x, y) planes, we do a D2Q4 model:

$$\boldsymbol{\lambda}_0 = \left(egin{array}{c} \lambda_{
ho} \ 0 \ 0 \end{array}
ight), \; \boldsymbol{\lambda}_1 = \left(egin{array}{c} -\lambda_{
ho} \ 0 \ 0 \end{array}
ight), \; \boldsymbol{\lambda}_2 = \left(egin{array}{c} 0 \ \lambda_{
ho} \ 0 \end{array}
ight), \; \boldsymbol{\lambda}_3 = \left(egin{array}{c} 0 \ -\lambda_{
ho} \ 0 \end{array}
ight).$$

• In the z direction, we do a D1Q2 model:

$$\lambda_4 = \left(egin{array}{c} 0 \ \lambda_z \end{array}
ight), \quad \lambda_5 = \left(egin{array}{c} 0 \ 0 \ -\lambda_z \end{array}
ight).$$

- We use an unstructured mesh in the (x, y) direction and a periodic structured mesh in the z direction.
- We solve the transport kinetic equations with a Discontinuous Galerkin method in (x, y) and a characteristic method in the z direction.
- The implementation is parallelized with OpenMP in the (x, y) planes and with MPI in the z direction.
- The solver is CFL-less.

Initialization of the Diocotron testcase

We initialize the density with

$$\rho(r,\theta,z,0) = e^{-\frac{(r-r_0)^2}{2\sigma^2}} \left(1 + \epsilon \cos\left(k\theta + lz\frac{2\pi}{L}\right)\right).$$

The computational domain is the cylinder

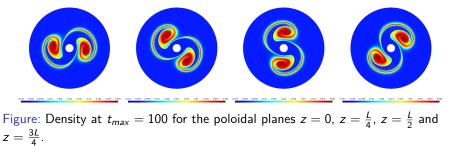
$$\Omega = \left\{ (r\cos(\theta), r\sin(\theta), z) \mid r_{\min} \le r \le r_{\max}, 0 \le \theta \le 2\pi, \ 0 \le z \le L = 1 \right\}.$$

We consider

- homogeneous Dirichlet boundary conditions on the potential ϕ ,
- periodic boundary conditions on z.

3D Diocotron testcase

We choose $\Delta t = 0.0026$, $n_t = 38400$, $\omega = 1.99$, $n_p = 128$, $\lambda_p = 7$, $\lambda_z = 3$, $B_\theta = 0.1$, $B_z = 1$, k = 2 and l = 1. In the poloidal plane, we took a mesh of size 80×50 .



Animation of the Diocotron testcase

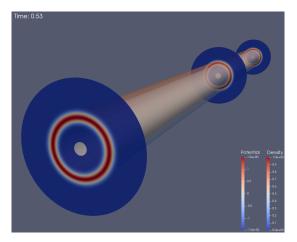


Figure: Evolution of the density in three poloidal planes.

Conclusion

- The equivalent equation of the kinetic models gives useful information about **stability** and **boundary conditions**.
- The kinetic scheme is CFL-less and can be used on unstructured grids.
- We have computed and tested it in an efficient way on a parallel computer.

Thank you for your attention !

References

Drui, Florence, Franck, Emmanuel, Helluy, Philippe, & Navoret, Laurent. 2019. An analysis of over-relaxation in a kinetic approximation of systems of conservation laws. *Comptes Rendus Mécanique*, **347**(3), 259–269.

Hyperbolicity condition

According to the equivalent equations, we have

$$\partial_t \boldsymbol{g} + A_1 \partial_{x_1} \boldsymbol{g} + A_2 \partial_{x_2} \boldsymbol{g} = 0,$$

with $A_1 = \begin{pmatrix} \frac{\lambda}{2} - \boldsymbol{a} & 0\\ -\boldsymbol{b} & -\frac{\lambda}{2} \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -\frac{\lambda}{2} - \boldsymbol{a}\\ -\frac{\lambda}{2} & -\boldsymbol{b} \end{pmatrix}.$

Theorem

If A_1P and A_2P are symmetric and P is symmetric positive-definite, then

$$\partial_t P \boldsymbol{g} + A_1 P \partial_{x_1} \boldsymbol{g} + A_2 P \partial_{x_2} \boldsymbol{g} = 0$$

is hyperbolic.

Hyperbolicity condition D2Q3 (demonstration)

Demonstration :

We note $P = \begin{pmatrix} u & v \\ v & w \end{pmatrix}$. A_1P and A_2P are symmetric if

$$\begin{cases} (\frac{\lambda}{2} - a)v = -bu - \frac{\lambda}{2}v \\ (-\frac{\lambda}{2} - a)w = -\frac{\lambda}{2}u - bv \end{cases} \iff \begin{cases} v = \frac{-b}{\lambda - a}u \\ w = \frac{\lambda(\lambda - a) - 2b^2}{(\lambda + 2a)(\lambda - a)}u \end{cases}$$

If we choose $u = \frac{(\lambda+2a)(\lambda-a)}{2}$, the eigenvalues of P are :

$$\frac{1}{2}\left(\lambda^2 - a^2 - b^2 \pm \sqrt{(a^2 + b^2)^2 + \lambda(-2a^3 + 6ab^2) + \lambda^2(a^2 + b^2)}\right).$$

We observe that p_1 and p_2 are equal to the eigenvalues of the diffusion matrix. Therefore, the matrix P is positive-definite if the stability conditions are verified.

Hyperbolicity condition D2Q4 (demonstration) According to the equivalent equations, we have

$$\partial_t \boldsymbol{g} + A_1 \partial_{x_1} \boldsymbol{g} + A_2 \partial_{x_2} \boldsymbol{g} = 0$$

with $A_1 = \begin{pmatrix} -a & 0 & \frac{1}{2} \\ -b & 0 & 0 \\ \lambda^2 & 0 & 0 \end{pmatrix}$ and $A_2 = \begin{pmatrix} 0 & -a & 0 \\ 0 & -b & -\frac{1}{2} \\ 0 & -\lambda^2 & 0 \end{pmatrix}$.
Demonstration : We note $P = \begin{pmatrix} u & v & w \\ v & x & y \\ w & y & z \end{pmatrix}$.

 A_1P and A_2P are symmetric if

$$\begin{cases} bu = av - \frac{1}{2}y \\ \lambda^2 u = -aw + \frac{1}{2}z \\ \lambda^2 v = -bw \\ bv + \frac{1}{2}w = ax \\ \lambda^2 v = ay \\ \lambda^2 x = by + \frac{1}{2}z \end{cases}$$

Hyperbolicity condition D2Q4 (demonstration) By solving this system and choosing v = -ab, we obtain

$$P = \begin{pmatrix} \frac{\lambda^2}{2} - a^2 & -ab & \lambda^2 a \\ -ab & \frac{\lambda^2}{2} - b^2 & -\lambda^2 b \\ \lambda^2 a & -\lambda^2 b & \lambda^4 \end{pmatrix}$$

As P is symmetric, according to the Sylvester's criterion, P is positive-definite if and only if all of the leading principal minors are positive.

•
$$|P_1| = \frac{\lambda^2}{2} - a^2 > 0$$
 if the stability condition is verified.
• $|P_2| = \left(\frac{\lambda^2}{2} - a^2\right) \left(\frac{\lambda^2}{2} - b^2\right) - a^2 b^2 = \frac{\lambda^2}{2} \left(\frac{\lambda^2}{2} - a^2 - b^2\right) > 0.$
• $|P_3| = \lambda^4 \left(\frac{\lambda^2}{2} - 2a^2\right) \left(\frac{\lambda^2}{2} - 2b^2\right) > 0$ if $\frac{\lambda^2}{2} > 2 \max(a^2, b^2)$ or if $\frac{\lambda^2}{2} > 2 \min(a^2, b^2)$
If the stability condition is verified, we cannot have $\frac{\lambda^2}{2} > 2 \min(a^2, b^2)$.

Finally, the system is hyperbolic if $2 \max(a^2, b^2) < \frac{\lambda^2}{2}$.