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Introduction

We consider the scalar conservation law in 2 dimensions

∂tw +∇ · q(w) = 0, (E)

where
• w(x, t) ∈ R,
• x = (x1, x2) ∈ R2,

• q(w) =
(

q1(w(x, t))
q2(w(x, t))

)
.

Romane Hélie Equivalent equation analysis of a kinetic relaxation model 2 / 41



Introduction

∂tw +∇ · q(w) = 0. (E)

• We only have one variable w ∈ R. We use a kinetic scheme D2Qnv
which approximate (E) with nv equations with variables denoted
f ∈ Rnv .

• Kinetic models are efficient numerical scheme which use transport at
constant velocities. However, it can be difficult to analyze them.

• The solution of this equation given by a kinetic model can be
approximate by an equivalent equation, which will have nv variables.

• The analysis of this equivalent equation gives us information on the
stability and the boundary conditions.
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Kinetic approximation

∂tw +∇ · q(w) = 0 (E)

We consider the BGK kinetic model

∂t fi +∇ · (λi fi ) = 1
ε

(
f eq
i − fi

)
, for i = 1, . . . , nv , (K)

where
• λi are the kinetic velocities,
• f = (fi ) is the kinetic unknown,
• f eq = (f eq

i ) is the equilibrium kinetic vector which satisfy the
consistency relations

w =
nv∑

i=1
f eq
i and q(w) =

nv∑
i=1

λi f eq
i .

In the limit ε→ 0,
∑nv

i=1 fi tends to the solution w .
Romane Hélie Equivalent equation analysis of a kinetic relaxation model 6 / 41



∂t fi + λi ·∇fi = 1
ε

(f eq
i − fi )

When ε→ 0, we have fi → f eq
i .

By summing the nv equations, we obtain

nv∑
i=1

∂t fi +
nv∑

i=1
λi ·∇fi = 1

ε

( nv∑
i=1

f eq
i −

nv∑
i=1

fi
)
.

We took the limit when ε→ 0, we have

∂t

( nv∑
i=1

f eq
i

)
+ ∇ ·

( nv∑
i=1

λi f eq
i

)
= 0.

Using the consistency conditions, we finally obtain

∂tw +∇ · (q(w)) = 0.

Romane Hélie Equivalent equation analysis of a kinetic relaxation model 7 / 41



The kinetic velocities
• In the D2Q3 model, we have nv = 3 kinetic velocities

λ1 =
(
λ
0

)
, λ2 =

(
−λ

2
λ
√

3
2

)
, λ3 =

(
−λ

2
−λ
√

3
2

)
.

• In the D2Q4 model, we have nv = 4 velocities along the cartesian
axes

λ1 =
(
λ
0

)
, λ2 =

(
−λ
0

)
, λ3 =

(
0
λ

)
, λ4 =

(
0
−λ

)
.

λ1

λ2

λ3

λ1λ2

λ3

λ4
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The moments
The consistency conditions gives us the system

w
q1(w)
q2(w)

zeq
3

 =


1 1 1 1
λ1,1 λ2,1 λ3,1 λ4,1
λ1,2 λ2,2 λ3,2 λ4,2
m1,3 m2,3 m3,3 m4,3


︸ ︷︷ ︸

M


f eq
1

f eq
2

f eq
3

f eq
4

 .

With the D2Q4 model, we are free to choose the third moment and its
equilibrium. We choose:

mi ,3 = (λi ,1)2 − (λi ,2)2 and zeq
3 = 0.

We note g =


w
z1
z2
z3

 the variables such as

g = Mf (1)
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Splitting method

To solve in time the kinetic model

∂t fi + λi ·∇fi = 1
ε

(f eq
i − fi ), (K)

we apply a splitting method:

• Transport step:
∂t fi + λi ·∇fi = 0. (T )

• Relaxation step:
∂t fi = 1

ε
(f eq

i − fi ). (R)

We consider a time step ∆t > 0. At each iteration, we solve (T ) and (R)
on ∆t.
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Transport step
The exact solutions of the nv transport equations

∂t fi + λi ·∇fi = 0, (T )

write
f ∗i (x, t + ∆t) = fi (x −∆tλi , t).

The resolution of (T ) for one time step can be written

f ∗(x, t + ∆t) = D(∆t)f (x, t),

with the translation operator

(τi (h)v) (x) = v(x − hλi ),

and D the diagonal matrix operator D(∆t) =

τ1(∆t)
. . .

τnv (∆t)

 .
Romane Hélie Equivalent equation analysis of a kinetic relaxation model 11 / 41



Flux error
As we have g = Mf , we can rewrite the transport step as

g∗(x, t + ∆t) = MD(∆t)M−1g(x, t).

We define the flux error as

yk = zk − qk(w), for k = 1, 2.

The transport step in the moments g = (w , z) can be rewritten on the
error flux h = (w , y)

h∗(x, t + ∆t) =


w∗(x, t + ∆t)
y∗1 (x, t + ∆t)
y∗2 (x, t + ∆t)
z∗3 (x, t + ∆t)



=MD(∆t)M−1


w(x, t)

y1(x, t) + q1(w(x, t))
y2(x, t) + q2(w(x, t))

z3(x, t)

−


0
q1(w∗(x, t + ∆t))
q2(w∗(x, t + ∆t))

0
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Relaxation step
We want to solve

∂t fi = 1
ε

(f eq
i − fi ). (R)

We note
• f n

i : the kinetic fields at time tn = n∆t.
• f ∗i : the kinetic fields after the free transport step.
• f ∗,eq

i : the equilibrium fields after the free transport step.
We approximate (R) by the relaxation formula

f n+1
i = f ∗i + ω

(
f ∗,eq
i − f ∗i

)
, with ω ∈ [1, 2].

By choosing ω = 2 (justification of this choice below), we have
w(x, t + ∆t)
z1(x, t + ∆t)
z2(x, t + ∆t)
z3(x, t + ∆t)

 =


w∗(x, t + ∆t)

2q1(w∗(x, t + ∆t))− z∗1 (x, t + ∆t)
2q2(w∗(x, t + ∆t))− z∗2 (x, t + ∆t)

−z∗3 (x, t + ∆t)

 .
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Equivalent equation
• When ω = 2 and up to second order terms in ∆t the equivalent
equation of the D2Q3 scheme is:

∂t

w
y1
y2

+

q′1(w) 0 0
0 λ

2 − q′1(w) 0
0 −q′2(w) −λ

2


︸ ︷︷ ︸

A1

∂x1

w
y1
y2



+

q′2(w) 0 0
0 0 −λ

2 − q′1(w)
0 −λ

2 −q′2(w)


︸ ︷︷ ︸

A2

∂x2

w
y1
y2

= 0.

• When ω = 1 the equivalent equation is only a first order
approximation.

I In green, we retrieve the initial equation (E).
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Numerical validation of the equivalent equation
We can compare
• yvf

1 and yvf
2 obtained by solving the equivalent equation (with a finite

volume method, for instance),
• ykin

1 and ykin
2 obtained by ykin =

∑3
i=1 λi fi − q(w) after solving the

equation (E) with the D2Q3 model.
We choose the parameters
• Ω = [0, 1]× [0, 1],
• q′1(w) = 1 and q′2(w) = 1,
• λ = 3,
• a Gaussian initialization

w(x, 0) = exp
(
−‖x − xw

0 ‖2

2σ2

)
and yk(x, 0) = exp

(
−‖x − xy

0‖2

2σ2

)

with σ = 0.05, xw
0 = (0.25, 0.25) and xy

0 = (0.5, 0.5).
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Validation of the equivalent equation
ykin yvf ‖ykin − yvf ‖

y1

y2

Table: Error fluxes ykin and yvf and the L2 error ‖ykin − yvf ‖ at Tf = 0.06 for a
mesh of size 800× 800.

‖ykin
1 − yvf

1 ‖ = 5.64567× 10−4 and ‖ykin
2 − yvf

2 ‖ = 1.95625× 10−3

I The equivalent equation is a good approximation of the scheme and
therefore it gives useful information in its behavior.
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Subcharacteristic stability condition
A classical result is the following subcharacteristic stability condition. If we

consider ω 6= 2 and a linear flux q(w) =
(

aw
bw

)
, the equivalent equation is

∂tw +∇ · q(w) = ∆t
( 1
ω
− 1

2

)
∇ · (D∇w) + O(∆t2),

with the diffusion matrix

D =
(
λ
2 (λ+ a)− a2 −λ

2 b − ab
−λ

2 b − ab λ
2 (λ− a)− b2

)
.

The model is stable if this diffusion matrix is positive, that is if the
eigenvalues of D are positive.

The subcharacteristic stability condition is

1
2

(
λ2 − a2 − b2 ±

√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2)

)
> 0.
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Hyperbolicity condition

Proposition
If the subcharacteristic condition is satisfied then, the change of variable
h = Pm symmetrizes the equivalent equation, which is thus a hyperbolic
system with an entropy. We have

∂tPm + A1P∂x1m + A2P∂x2m = 0,

with A1 and A2 the matrices of the equivalent equation and

P =

1 0 0
0 λ

2 (λ+ a)− a2 −λ
2 b − ab

0 −λ
2 b − ab λ

2 (λ− a)− b2


is hyperbolic.
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Equivalent equation

By the same Taylor expansion,

we get the equivalent equation of the D2Q4 model

∂t


w
y1
y2
z3

+


q′1(w) 0 0 0

0 −q′1(w) 0 1
2

0 −q′2(w) 0 0
0 λ2 0 0


︸ ︷︷ ︸

A1

∂x1


w
y1
y2
z3



+


q′2(w) 0 0 0

0 0 −q′1(w) 0
0 0 −q′2(w) −1

2
0 0 −λ2 0


︸ ︷︷ ︸

A2

∂x2


w
y1
y2
z3

= 0.
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Numerical validation of the equivalent equation
ykin yvf ‖ykin − yvf ‖

y1

y2

Table: Error fluxes ykin and yvf and the L2 error ‖ykin − yvf ‖ at Tf = 0.06 for a
mesh of size 800× 800.

‖ykin
1 − yvf

1 ‖ = 1.21999× 10−5 and ‖ykin
2 − yvf

2 ‖ = 1.57384× 10−5

I The equivalent equation is a good approximation of the scheme and
therefore it gives useful information in its behavior.
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Subcharacteristic stability condition
If we consider a linear flux q(w) =

(
aw
bw

)
, we have

∂tw +∇ · q(w) = ∆t
( 1
ω
− 1

2

)
∇ · (D∇w) + O(∆t2),

with the diffusion matrix

D =
(
λ2

2 − a2 −ab
−ab λ2

2 − b2

)
.

The model is stable if this diffusion matrix is positive, that is if the
eigenvalues of D are positive.

The subcharacteristic condition for viscous stability is

a2 + b2 ≤ λ2

2 .
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Hyperbolicity condition

Proposition
If λ2 > 4max(a2, b2), then the system

∂tPm + A1P∂x1m + A2P∂x2m = 0,

with A1 and A2 the matrices of the equivalent equation and

P =


1 0 0 0
0 λ2

2 − a2 −ab λ2a
0 −ab λ2

2 − b2 −λ2b
0 λ2a −λ2b λ4

 ,
is hyperbolic.

This hyperbolicity condition is more restrictive than the viscous stability
condition.
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Boundary conditions

• In theory, the over-relaxation gives us a second order accuracy. We
want to find adapted boundary condition, which gives us this
accuracy.

• A first choice is to only impose boundary condition on w . But if we
solve the equation with a kinetic model D2Qnv , then we need (in
general) more conditions. Therefore, we need additional conditions
on the variables y1, y2 (and z3 for the D2Q4 model).

• Moreover, we can only impose w at the inflow boundary.

• In one dimension, the second order is achieved with a Dirichlet
condition on w at the inflow border, and a Neumann condition on y
at the outflow border (see [Drui et al., 2019]).
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Signs of the eigenvalues

We have the equivalent equation ∂th + A1∂x1h + A2∂x2h = 0.
Let’s note n = (n1, n2) a normal vector.

A strategy is to impose the components in the basis of the eigenvectors of
the matrix A1n1 + A2n2 when the associated eigenvalues are negative.

We choose
• a square geometry rotated of an angle π

10
• the initialization

w(x1, x2, t = 0) =
{

0 if r(x1, x2) > 1,
(1− r(x1, x2)2)5 otherwise.

with r(x1, x2) =
√

(x1−c1)2+(x2−c2)2

σ and σ = 0.4.
• λ = 1, T = 1, and Nt = 25, 50, 100, 200.
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Signs of the eigenvalues

We consider 2 different test-cases :
1 The peak starts outside the geometry and arrives in the middle of the

left border.
2 The peak starts in the middle of the square and arrives in the middle

of the left border.

1 2
a −0.5 cos(π/10 + π) −0.5 cos(π/10)
b −0.5 sin(π/10 + π) −0.5 sin(π/10)
c1 0.5 + cos(π/10 + π) 0.5
c2 0.5 + sin(π/10 + π) 0.5
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Signs of the eigenvalues

Figure: Error L2 for the two test-case with the boundary conditions defined with
the signs of the eigenvalues

We can observe that this boundary condition strategy does not give us a
second-order accuracy for the first test-case, but it is at least stable.
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Guiding-center model

Now, we consider the guiding-center model in 2 dimensions, which
describes the drift of the plasma{

∂tρ+ v · ∇ρ = 0,
−∆φ = ρ,

where
• ρ is the ion density,
• φ is the potential,
• E is the electric field defined as v(x, t) = (−∇φ(x, t))⊥ = E (x, t)⊥.

We use a finite element solver on the same poloidal mesh to solve Poisson
equation in the poloidal plane.
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Initialization
We initialize the density with the continuous
function

ρ(r , θ, 0) = e−
(r−r0)2

2σ2 (1 + ε cos(kθ)),

with {
x = r cos θ,
y = r sin θ.

We choose a ring geometry:

Ω = {(r cos(θ), r sin(θ)) | rmin ≤ r ≤ rmax ,

0 ≤ θ ≤ 2π} ,

with homogeneous Dirichlet boundary conditions
on the potential φ at r = rmin and r = rmax .

Figure: Initialization of the
density at time t = 0, with
rmin = 1, rmax = 10,
r0 = 4.5, σ = 0.5, ε = 10−6.
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Instability rate

We can estimate the growth rate of the instability created by the
perturbation, and compare it with the results of our solver:

Figure: Instability rate observed
compared to the theoretical one.

• Theoretical instability rate:
0.15215
• Observed instability rate:
0.15186

I The slope of the kth Fourier mode of the potential is fitting the
theoretical instability rate, which validates our computing.
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2D Diocotron testcase

We choose ∆t = 0.0125, nt = 8000, λp = 7, ω = 1.999, and k = 2.
We consider a mesh of size: 100× 60.

Figure: Densities obtained at time t = 80, t = 90 and t = 100.
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3D model

We consider the model in 3 dimensions which describes the drift of the
plasma inside a tokamak.

∂tρ+∇ · ((E × ez + B)ρ) = 0,
−∆x ,yφ = ρ,
E = −∇x ,yφ,

with
• ρ is the density,
• E is the electric field,
• B = (−sin(θ)ex + cos(θ)ey )Bθ + Bzez with θ the angle of the polar

coordinates in the plane (x , y): a divergence free magnetic field
(this is satisfied if Bθ and Bz are constants).
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The D3Q6 model
• In the (x , y) planes, we do a D2Q4 model:

λ0 =

(
λp
0
0

)
, λ1 =

( −λp
0
0

)
, λ2 =

( 0
λp
0

)
, λ3 =

( 0
−λp
0

)
.

• In the z direction, we do a D1Q2 model:

λ4 =

( 0
0
λz

)
, λ5 =

( 0
0

−λz

)
.

I We use an unstructured mesh in the (x , y) direction and a periodic
structured mesh in the z direction.

I We solve the transport kinetic equations with a Discontinuous
Galerkin method in (x , y) and a characteristic method in the z
direction.

I The implementation is parallelized with OpenMP in the (x , y) planes
and with MPI in the z direction.

I The solver is CFL-less.
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Initialization of the Diocotron testcase

We initialize the density with

ρ(r , θ, z , 0) = e−
(r−r0)2

2σ2

(
1 + ε cos

(
kθ + lz 2πL

))
.

The computational domain is the cylinder

Ω = {(r cos(θ), r sin(θ), z) | rmin ≤ r ≤ rmax , 0 ≤ θ ≤ 2π, 0 ≤ z ≤ L = 1} .

We consider
• homogeneous Dirichlet boundary conditions on the potential φ,
• periodic boundary conditions on z .
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3D Diocotron testcase

We choose ∆t = 0.0026, nt = 38400, ω = 1.99, np = 128, λp = 7,
λz = 3, Bθ = 0.1, Bz = 1, k = 2 and l = 1.
In the poloidal plane, we took a mesh of size 80× 50.

Figure: Density at tmax = 100 for the poloidal planes z = 0, z = L
4 , z = L

2 and
z = 3L

4 .

I Same density, but with a rotation.
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Animation of the Diocotron testcase

Figure: Evolution of the density in three poloidal planes.
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Conclusion

• The equivalent equation of the kinetic models gives useful information
about stability and boundary conditions.

• The kinetic scheme is CFL-less and can be used on unstructured
grids.

• We have computed and tested it in an efficient way on a parallel
computer.
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Thank you for your attention !
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Hyperbolicity condition

According to the equivalent equations, we have

∂tg + A1∂x1g + A2∂x2g = 0,

with A1 =
(
λ
2 − a 0
−b −λ

2

)
and A2 =

(
0 −λ

2 − a
−λ

2 −b

)
.

Theorem
If A1P and A2P are symmetric and P is symmetric positive-definite, then

∂tPg + A1P∂x1g + A2P∂x2g = 0

is hyperbolic.



Hyperbolicity condition D2Q3 (demonstration)

Demonstration :

We note P =
(

u v
v w

)
.

A1P and A2P are symmetric if{
(λ2 − a)v = −bu − λ

2 v
(−λ

2 − a)w = −λ
2 u − bv ⇐⇒

{
v = −b

λ−a u
w = λ(λ−a)−2b2

(λ+2a)(λ−a)u

If we choose u = (λ+2a)(λ−a)
2 , the eigenvalues of P are :

1
2

(
λ2 − a2 − b2 ±

√
(a2 + b2)2 + λ(−2a3 + 6ab2) + λ2(a2 + b2)

)
.

We observe that p1 and p2 are equal to the eigenvalues of the diffusion
matrix. Therefore, the matrix P is positive-definite if the stability
conditions are verified.



Hyperbolicity condition D2Q4 (demonstration)
According to the equivalent equations, we have

∂tg + A1∂x1g + A2∂x2g = 0

with A1 =

−a 0 1
2

−b 0 0
λ2 0 0

 and A2 =

0 −a 0
0 −b −1

2
0 −λ2 0

.
Demonstration : We note P =

u v w
v x y
w y z

 .
A1P and A2P are symmetric if

bu = av − 1
2y

λ2u = −aw + 1
2z

λ2v = −bw
bv + 1

2w = ax
λ2v = ay
λ2x = by + 1

2z



Hyperbolicity condition D2Q4 (demonstration)
By solving this system and choosing v = −ab, we obtain

P =

λ2

2 − a2 −ab λ2a
−ab λ2

2 − b2 −λ2b
λ2a −λ2b λ4

 .
As P is symmetric, according to the Sylvester’s criterion, P is
positive-definite if and only if all of the leading principal minors are
positive.
• |P1| = λ2

2 − a2 > 0 if the stability condition is verified.
• |P2| =

(
λ2

2 − a2
) (

λ2

2 − b2
)
− a2b2 = λ2

2

(
λ2

2 − a2 − b2
)
> 0.

• |P3| = λ4
(
λ2

2 − 2a2
) (

λ2

2 − 2b2
)
> 0 if λ2

2 > 2max (a2, b2) or if
λ2

2 > 2min (a2, b2)
If the stability condition is verified, we cannot have
λ2

2 > 2min (a2, b2).
Finally, the system is hyperbolic if 2max (a2, b2) < λ2

2 .


